The specific and essential role of MAVS in antiviral innate immune responses.
نویسندگان
چکیده
The mitochondrial antiviral signaling protein (MAVS) mediates the activation of NFkappaB and IRFs and the induction of interferons in response to viral infection. In vitro studies have also suggested that MAVS is required for interferon induction by cytosolic DNA, but the in vivo evidence is lacking. By generating MAVS-deficient mice, here we show that loss of MAVS abolished viral induction of interferons and prevented the activation of NFkappaB and IRF3 in multiple cell types, except plasmacytoid dendritic cells (pDCs). However, MAVS was not required for interferon induction by cytosolic DNA or by Listeria monocytogenes. Mice lacking MAVS were viable and fertile, but they failed to induce interferons in response to poly(I:C) stimulation and were severely compromised in immune defense against viral infection. These results provide the in vivo evidence that the cytosolic viral signaling pathway through MAVS is specifically required for innate immune responses against viral infection.
منابع مشابه
MAVS self-association mediates antiviral innate immune signaling.
The innate immune system recognizes nucleic acids during viral infection and stimulates cellular antiviral responses. Intracellular detection of RNA virus infection is mediated by the RNA helicases RIG-I (retinoic acid inducible gene I) and MDA-5, which recognize viral RNA and signal through the adaptor molecule MAVS (mitochondrial antiviral signaling) to stimulate the phosphorylation and activ...
متن کاملIdentification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3
Viral infection triggers host innate immune responses through activation of the transcription factors NFB and IRF3, which coordinately regulate the expression of type-I interferons such as interferon(IFN). Herein, we report the identification of a novel protein termed MAVS (mitochondrial antiviral signaling), which mediates the activation of NFB and IRF3 in response to viral infection. Silencin...
متن کاملPyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome
When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays...
متن کاملUbe2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity
Innate immunity plays a pivotal role in virus infection. RIG-I senses viral RNA and initiates an effective innate immune response for type I interferon production. To transduce RIG-I-mediated antiviral signalling, a mitochondrial protein MAVS forms prion-like aggregates to activate downstream kinases and transcription factors. However, the activation mechanism of RIG-I is incompletely understoo...
متن کاملForeign RNA Induces the Degradation of Mitochondrial Antiviral Signaling Protein (MAVS): The Role of Intracellular Antiviral Factors
Mitochondrial antiviral signaling protein (MAVS) is an essential adaptor molecule that is responsible for antiviral signaling triggered by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), leading to the induction of type I interferon in innate immunity. Previous studies have shown that certain viruses evade the innate immune response by cleaving the MAVS protein. However, little is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Immunity
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2006